Arduino 37 Sensor Kit
First acquaintance

Lecturer Dr. Samuel Kosolapov
General Appearance: ~ 36+1 modules in one box

In this presentation only simple (even primitive) modules will be explained and demonstrated
Leaflet inside the box
Leaflet inside the box: Arrangement of modules
List of Modules in the box: KY-0XY

- 1 x Small passive buzzer module KY-006
- 1 x 2-color LED module KY-011
- 1 x Hit sensor module KY-031
- 1 x Vibration switch module KY-002
- 1 x Photo resistor module KY-018
- 1 x Key switch module KY-004
- 1 x Tilt switch module KY-020
- 1 x 3-color full-color LED SMD modules KY-009
- 1 x Infrared emission sensor module KY-005
- 1 x 3-color LED module KY-016
- 1 x Mercury open optical module KY-017
- 1 x Yin Yi 2-color LED module 3MM KY-029
- 1 x Active buzzer module KY-012
- 1 x Temperature sensor module KY-013
- 1 x Automatic flashing colorful LED module KY-034
- 1 x Mini magnetic reed modules KY-021
- 1 x Hall magnetic sensor module KY-003
- 1 x Infrared sensor receiver module KY-022

- 1 x Class Bihor magnetic sensor KY-035
- 1 x Magic light cup module KY-027
- 1 x Rotary encoder module KY-040
- 1 x Optical broken module KY-010
- 1 x Detect the heartbeat module KY-039
- 1 x Reed module KY-025
- 1 x Obstacle avoidance sensor module KY-032
- 1 x Hunt sensor module KY-033
- 1 x Microphone sound sensor module KY-038
- 1 x Laser sensor module KY-008
- 1 x 5V relay module KY-019
- 1 x Temperature sensor module KY-001
- 1 x Temperature sensor module KY-028
- 1 x Linear magnetic Hall sensors KY-024
- 1 x Flame sensor module KY-026
- 1 x Sensitive microphone sensor module KY-037
- 1 x Temperature and humidity sensor module KY-015
- 1 x XY-axis joystick module KY-023
- 1 x Metal touch sensor module KY-036
Problem: Random Arrangement inside the box:

Modules are not arranged as in this picture.

→ First “exercise” is to arrange modules in accordance with this picture.

THIS IS NOT A TRIVIAL JOB !!!

Visual difference between some modules is very small.

(Remember “Find 2 differences games for children”?)

Small details (like “holes” position) must be taken into account.
What is the difference?
(KY number is not present on the board ...)

Arduino KY-006 Small passive buzzer module

Arduino KY-012 Active buzzer module
Simple “electronic” test *(demonstrate)*

passive buzzer module will shortly “click”

Connect Pin “-” to GND
Connect Pin “S” to +5V
Middle Pin: is not important

Active buzzer module will produce constant tone

Execute “live test” only after you get proper explanations

Details and usage later
Useful tool for EE: Magnification lens

To see in a clear way small letters and pin numbers

Some elements of the sensors can be bend in an inappropriate way.
Gently unbend (or ask lecturer in case of doubts)
Problem: No serious documentation

The problem with finding the data sheet is due to the fact that the name on the controllers board KEYES is the name of the board manufacturer who does not specify his board anywhere.

Their reference for the product is:
318-ENC130175F-12PS
The data sheet is just one page but it does describe the PIN_OUTS.

However, short module description + examples can be found:
https://tkkrlab.nl/wiki/Arduino_37_sensors
(Unfortunately, this site is Google Translation from Chinese, so some creativity is needed to understand what does this means…)

➔ One of the goals of student’s presentations:
Create some documents and examples
Hint: use “KY-xxx” to find youtube videos and exemplary projects
Primitive Sensor: Switch

37 Sensor Kit contains a number of primitive sensors which are actually operates as a mechanical switch. Despite primitive design, those modules sense important events.

In some cases operation of the “switch sensors” can be demonstrated by measuring resistance between “S” and GND pins.

Pin “-” : Connect to Arduino GND
Middle pin : Connect to Arduino +5V
Pin “S” : Connect to Arduino Digital pin configured to INPUT

Between Pin “S” and Middle Pin (“+5V”) there is 10 k Pull-up resistor

Pull-Up resistor. Reminder:
It is assumed that input impedance of the circuit connected to Pin “S” is high and has no influence on the Pin “S” voltage.
When switch is OFF, pin “S” has “5V” (HIGH)
When switch is off, Pin “S” is connected to the Ground ➔ Pin “S” is LOW
Primitive Sensor: KY-004 Mechanical Key Switch

Warning: Image is differ from real switch (mirror)

Pin “-” : Connect to Arduino GND
Middle pin : Connect to Arduino +5V
Pin “S” : Connect to Arduino Digital pin configured to INPUT

Between Pin “S” and Middle Pin (“+5V”) there is 10 k Pull-up resistor
Example of Mechanical Key Switch Test

Pin “S” of the switch connected to (say) Pin 8 of the Arduino Board

Circuit operation:
LED13 is normally OFF
When the button (key) is pressed, LED13 is ON
Example of Mechanical Key Switch Test

```c
int Led = 13 ;// define LED Interface
int buttonpin = 10; // define the key switch sensor interface
int val ;// define numeric variables val

void setup ()
{
    pinMode (Led, OUTPUT); // define LED as output interface
    pinMode (buttonpin, INPUT); // define the key switch sensor output interface
}

void loop ()
{
    val = digitalRead (buttonpin);
    if (val == HIGH) // When the key switch when the sensor detects a signal, LED flashes
    {
        digitalWrite (Led, HIGH);
    }
    else
    {
        digitalWrite (Led, LOW);
    }
}
```

Pin 10 (and not 8) is used in this example

No DEBOUNCING in this example !!!
(Human eye will “average” LED intensity changes
KY-021 Mini magnetic reed switch

Switch is Normally OPEN. When exposed to magnetic field switch get closed
(Demonstrate with tester and small magnet)

The code is as with "simple button/key switch"
Discuss usage in the industry and at home.
(Hidden lock (open with magnet.
Door with magnet: is the door open ?)

Pin “-” : Connect to Arduino GND
Middle pin : Connect to Arduino +5V
Pin “S” : Connect to Arduino Digital pin configured to INPUT

Between Pin “S” and Middle Pin (“+5V”) there is 10 k Pull-up resistor
The shell of a reed switch is commonly a sealed glass pipe in which two iron elastic reed electroplates are equipped and inert gases are filled. Normally, the two reeds are separated. However, when a magnetic substance (for example, small magnet) approaches the glass tube, the two reeds in the glass tube are magnetized and attract each other. As a result, the two reeds will pull together creating electrical contact. After external magnetic force disappeared, the two reeds will be separated with each other because they have the same magnetism, then the circuit is disconnected.
KY-020 Tilt switch

Switch is Normally OPEN. When oriented upwards, the switch is closed. Inside: a small ball that moves when orientation changes (Demonstrate with tester)

The code is as with “simple button/key switch

Discuss usage in the industry and at home. (Theft protection?)
Alarm when object is moved?
A shock switch also called vibration switch, spring switch or shock sensor, is an electronic switch. It contains conductive vibration spring. Switch is normally open. When vibrated, switch is closed.

The code is as with “simple button/key switch

Discuss usage in the industry and at home.

Operation of this module cannot be demonstrated by using multimeter (too slow)
KY-031 knock/tap switch

- Pin "-" : Connect to Arduino GND
- Middle pin : Connect to Arduino +5V
- Pin “S” : Connect to Arduino Digital pin configured to INPUT
- Between Pin “S” and Middle Pin (“+5V”) there is 10 k Pull-up resistor

The code is as with “simple button/key switch

Discuss usage in the industry and at home.

Operation of this module cannot be demonstrated by using multimeter (too slow)
KY-017 Mercury tilt switch

Pin “-” : Connect to Arduino GND
Middle pin : Connect to Arduino +5V
Pin “S” : Sensor Out

Additionally
there is 10 k Pull-up resistor and LED
KY-017 Mercury tilt switch

Discuss usage in the industry and at home.

The code is as with "simple button/key switch"
Simple Actuators

37 Sensor Kit contains a number of simple ACTUATORS like LED, Buzzer.

In some cases operation of these modules can be demonstrated by applying +5V to relevant pins (do not forget about GND, however)

The simplest usage of these modules is to signal to human operator that something happen
LED as actuator.

We already know how to operate Flashing LED on the Pin13 of the Arduino Board.

The trivial usage of the LEDs is to send to human operator simple predefined messages. For example “Power is ON”; Serial communication is going on.
LED as actuator.

LED can be easily connected to Arduino. BUT: As LED as Arduino board can be damaged in some cases. ➔ Do not connect LEDs before checking voltages and currents. Details later
Demonstrate direct connection of R, G, B pins to 5V. Pin “-” to GND. Safe, because protection resistors are on the module.

RGB trichromatic limiting resistor to prevent burnout

For some reason known to producer only:

- “R” == “B”
- “G” == “G”
- “B” == “R”

Advanced usage with PWM and analogWrite will be explained later.
KY-009 3-Color 5V RGB SMD LED Module.

You can't connect the led's directly to the Arduino
➔ You will need resistors!!
Arduino pin 9 > 180 Ohm resistor > Pin 'R' of KY009 module
Arduino pin 10 > 100 Ohm resistor > Pin 'G' of KY009 module
Arduino pin 11 > 100 Ohm resistor > Pin 'B' of KY009 module

No demonstrations
Students will not get this module (no reason)
KY-011 Two color LED 5mm.

- Color: Green + Red
- Diameter: 5mm
- Case Color: None
- Package Type: Diffusion
- Voltage (V): 2.0-2.5v
- Using a current (MA): 10
- Viewing angle: 150
- Wavelength (NM): 571 +644
- Luminous intensity (MCD): 20-40; 40-80
- Stent type: long-legged

→ 330 Ohm resistor is needed
→ DO NOT USE

No demonstrations
Students will not get this module (no reason)
KY-029 Two color LED mini 3mm diam.

- Color: Green + Red
- Diameter: 3mm
- Case Color: None
- Package Type: Diffusion
- Voltage (V): 2.0-2.5v
- Using a current (MA): 10
- Viewing angle: 150
- Wavelength (NM): 571 +644
- Luminous intensity (MCD): 20-40; 40-80

?? Ohm resistor is needed
→ DO NOT USE

No demonstrations
Students will not get this module (no reason)
KY-034 7-color Automatically Flashing LED

The module contains a 7-color 5mm LED with a built-in chip that sequentially flashes each color in turn. Color pattern is repeated in about 15 seconds. LED model: YB-3120B4PNYG-PM Forward voltage: 2.5V - 6V Forward current: 40mA

Connection

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"S"</td>
<td>+5V or +3.3V</td>
</tr>
<tr>
<td>Central</td>
<td>Ground</td>
</tr>
<tr>
<td>"."</td>
<td>Not connected</td>
</tr>
</tbody>
</table>

Use as fancy ALARM.
Mind 15 sec time needed to see all the colors

Demonstrate by direct connection.
Attention: GND is Middle pin !!!
KY-008 Laser Diode 650 nm

Connection

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"S"</td>
<td>+5V or +3.3V</td>
</tr>
<tr>
<td>Central</td>
<td>Not connected</td>
</tr>
<tr>
<td>"-"</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Laser Diodes are widely used in electronics

BUT: Students will not get Laser Diode
Because this device is really dangerous.
KY-006 Passive Buzzer and KY-012 Active Buzzer

Passive buzzer has “black bar”

The seal can be removed
KY-006 Passive Buzzer and KY-012 Active Buzzer

Passive buzzer has passive piezo element inside

Active buzzer has piezo element and additional “oscillator” inside
⇒ More expensive, but simpler for usage
KY-006 Passive Buzzer and KY-012 Active Buzzer

Passive Buzzer
Can be used as Primitive Speaker with limited frequency range)

Pin (-) : GND
Pin (S) : Signal
Middle pin is NOT USED

Connect “S” to pin producing “signal” of **different frequencies** → Buzzer will produce “sound”

Generally square wave (up to ~ 5K) generated by digital pin is used.

When DC (5V) is connected to “S”
Only short “click” is heard.

Active Buzzer
Can be used as very simple **ALARM**

Pin (-) : GND
Pin (S) : Signal
Middle pin is NOT USED

When DC (or Pin having 5V or 3.3V) is connected to “S” signal of **constant** frequency is heard
KY-012 Active Buzzer

Active Buzzer

Can be used as very simple **ALARM together with LED13**

Pin (-) : Connect to GND
Pin (S) : Connect to (say) Pin 12
Middle pin is NOT USED

When Pin12 is low nothing happened
When Pin12 is HIGH “ALARM” is heard

More sophisticated usage of active buzzer with PWM will be discussed later
Passive Buzzer can be used as a cheap alternative to speaker
BUT: Useful frequency range is limited

tone function
Syntax
 tone(pin, frequency)
 tone(pin, frequency, duration)
Parameters
 pin: the pin on which to generate the tone
 frequency: the frequency of the tone in Hertz - unsigned int
 optional parameter: duration: the duration of the tone in milliseconds - unsigned long
Returns
 nothing

For UNO:
 min frequency: 31 Hz. Max frequency 65535 Hz
BUT:
 primitive buzzer cannot play such a high frequencies.

The alternative tone function can be implemented by direct manipulations with relative pin
KY-006 Passive Buzzer play melody

Go to above page to see the code. **BUT: Use buzzer, not 8 Ohm speaker !!!!!!**
Speaker instead of Passive Buzzer

If you connected the speaker directly to the Arduino digital pin you have damaged your Arduino pin by pulling too much current from it.

Do not rely on internal protection resistor.

You need at least a 120 ohm resistor in line with the speaker for direct connection. Of course it will not be as loud but then you are not burning your output pin.

For best results you need to use a transistor and capacitor to connect your speaker. Google for lots of schematics.

Translation: Use Power Amplifier with different Power Supply.
KY-019 5V Relay Module

Relay module with one normally open and one normally closed contacts. It can be used to control home appliances up to **220V AC 10A or 30 V DC 10A**.

Do not Connect serious staff here
REMEmBER: In case of 220V EE must think what and how can be connected

“-” : GND
Middle Pin : “+5V”
“S” : Digital Signal

NC : Normally closed
NO : normally open
Common : common
KY-019 5V Relay Module

A lot of good questions can be asked during exam...
KY-019 5V Relay Module. Low Voltage connection

Wiring Diagram
KY-019 5V Relay Module. Low Voltage connection

Sample Program

// Kyoes 5V Relay Module Sample Program

void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the 5V buzzer on
 delay(2000); // on for two seconds
 digitalWrite(13, LOW); // turn the 5V buzzer off
 delay(2000); // off for two seconds
}

The buzzer will turn on every two seconds.
You can also hear the tick of relay every two seconds.
Other Modules

Design and usage of other modules will be explained later.

Please do not use them before explanations